
Standard Behavior Descriptions for the
Web of Things

Victor Charpenay
Chair of Technical Information Systems,

Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg

victor.charpenay@fau.de

April 22, 2019

Abstract

This article motivates the need for an extensive behavior description
framework as part of the collection of Web standards for the Web of
Things (WoT). The existing WoT API represents a good starting point to
describe the behavior of ‘things’, as well as more complex automation
systems running on WoT. To make a WoT script easy to expose and
exchange, high-level constraints on the ‘things’ it consumes (and exposes)
should be exposed as well.

1 introduction

This article presents a possible extension to the Web of Things (WoT) frame-
work1 standardized by the World Wide Web Consortium (W3C). This frame-
work is structured around building blocks like the Thing Description (TD)
model2 and the WoT Scripting API3. This modular construction allows for
the development of layered runtime environments for WoT as the engine of
intelligent ‘things’.

Thing

Behavior

Interactions

Security Configuration

Protocol Bindings

Source: W3COf all layers, the one that got the least attention in the recent W3C
standardization process is the upper one: behavior. As the main architecture
document puts it, “the behavior aspect of a Thing includes both lifecycle
management (...) but also the operational behavior of the Thing”4. To
some extent, the WoT Scripting API addresses the latter aspect of operational
behavior, though in a non-normative way. This article motivates the need for
an extensive behavior description framework and elaborates a proposal on
top of the WoT API, with relation to the TD model.

2 describing the behavior of things

The general architecture of WoT mostly finds application in industrial use
cases, where the decentralized nature of the Web allows for robust and
adaptive automation systems. The seminal idea of WoT was indeed to
facilitate Web mash-ups between sensor inputs and actuator outputs.

1 https://www.w3.org/WoT/WG/
2 http://w3.org/TR/wot-thing-description/
3 https://www.w3.org/TR/wot-scripting-api/
4 https://www.w3.org/TR/wot-architecture/

1

mailto:victor.charpenay@fau.de
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/WoT/WG/
http://w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-architecture/

2 describing the behavior of things 2

Sensor

Furnace

Client

1. readproperty temperature

2. readproperty setpoint

3. readproperty onOffState

4. invokeaction turnOn Sensor Furnace1. readproperty onOffState
2. invokeaction turnOn

Sensor Furnace1. readproperty temperature
2. readproperty setpoint

Figure 1: Alternative sequences of interactions among elements of a thermostat
system; interactions are either mediated (left) or peer-to-peer (middle & right)

The W3C standard for WoT focuses on individual ‘things’, the atomic
elements of a WoT system, insofar as the whole framework relies on the TD
model, which specifies interaction affordances ‘things’ can expose. However,
complex interaction patterns may emerge among WoT agents such that a
collection of TD documents would not suffice to explain the general behavior
of an automation system. As the complexity of these systems grows, it
becomes urgent to not only describe ‘things’ in a formal way but also to
describe their behavior.

2.1 Challenge: Web of Things Scripts as Behavior Descriptions

To illustrate the problem of describing behaviors, let us take the traditional
WoT example of a temperature sensor interacting with a heating system in a
thermostat application. It is mentioned in the following terms in the W3C
WoT architecture document:

The behavior implementation specifies how other behavior of
a Thing is implemented, which may or may not be directly related
to an interaction. For example, a thermostat may need to execute
a control loop to control a furnace based on a sensor reading.
This does not directly relate to a specific interaction, although it
might be controlled by a property (such as target temperature)
that can be modified by an interaction.

Even in such a simple example with two ‘things’, several interactions
can take place to achieve the same goal of maintaining the temperature of
some room constant. If we assume the existence of two connected ‘things’,
a temperature sensor and a furnace, three cases can be identified. First,
interactions can be mediated by a computer agent controlling the whole
system by reading the properties of both ‘things’ and invoking actions on
the furnace. Interactions can also take place directly between the sensor and
the furnace, in which case they are peer-to-peer and can be either driven by
the sensor or by the furnace. Figure 1 shows possible sequences in the three
cases.

Because interactions are not unique, they cannot be a relevant descriptor
of the thermostat behavior. The problem can however be seen from a different
perspective, namely in terms of WoT scripting. The same script can generate
the interactions on Fig. 1 in all three cases, depending on which WoT runtime
it is executed: when interactions are mediated, the script is run on the client
while in both peer-to-peer sequences, the script is run on the ‘thing’ driving
the interactions (either the sensor or the furnace). Such a script can be written
solely against the WoT API, as demonstrated in Listing 1.

2 describing the behavior of things 3

var sensor = wot . consume ({ . . . }) , // temperature sensor TD
furnace = wot . consume ({ . . . }) ; // furnace TD

funct ion r e g u l a t e () {
var a c t u a l = sensor . p r o p e r t i e s . temperature ,

des ired = furnace . p r o p e r t i e s . se tpo int ,
isOn = furnace . p r o p e r t i e s . onOffState ;

i f (a c t u a l < desired && ! isOn) furnace . a c t i o n s . turnOn . invoke () ;
e l s e i f (isOn) furnace . a c t i o n s . turnOff . invoke () ;

}

s e t I n t e r v a l (regulate , 1 0 0 0) ;

Listing 1: WoT script implementing a thermostat (ECMAScript)

Another level of complexity is added when considering recursive def-
initions for automation systems. Again, a single call to wot.expose would
expose the whole thermostat as a ‘thing’, e.g. with a writable setpoint prop-
erty to control temperature. In general, the WoT API is a powerful tool to
describe the behavior of WoT systems. The next step in the standardization
process may be to facilite the exchange of WoT scripts.

2.2 Motivation

As already mentioned, the WoT API is not a normative document. Within
the W3C working group, there was the intuition that the TD model would
have a higher value if it came with a programmatic interface, per analogy
with HTML and the DOM API. This intuition, deserves being followed in
more depth as the example above illustrates.

However, none of the use cases the group considered requires exposing
WoT scripts themselves on the Web. At the time, the main argument in favor
of a WoT API was code reusability: a thermostat script could be registered
as a package by a package manager like npm5 or PyPI6 for reuse in other
scripts. Arguably, there is no need for the W3C to standardize anything like
a package manager. In the field of WoT, the Node-RED platform7 already
plays that role.

Yet, we will see in the next section that the current API specification is
hardly enough for reusability and there are other good reasons to expose
and exchange WoT scripts. Among others: 1. automatic (re)deployment of
an application onto a WoT runtime, 2. simulation of the internal behavior
of a system in a so-called Digital Twin8 and 3. interaction replay in case of
failure or liability testing as required in some industries.

2.3 Main Issues

The thermostat script of Listing 1 makes implicit assumptions about what
the input TD documents include. Listings 2 & 3 make these assumptions
explicit. However, one should not expect developers willing to reuse the
script in their own code to find these assumptions by themselves. There
should therefore be a mechanism to express requirements for a script in

5 https://www.npmjs.com/
6 https://pypi.org/
7 https://nodered.org
8 Edward Glaessgen and David Stargel. “The digital twin paradigm for future NASA and US

Air Force vehicles.” In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference. 2012, p. 1818.

https://www.npmjs.com/
https://pypi.org/
https://nodered.org

3 existing technologies 4

terms of TD structures. The listings below are in fact JSON-LD frames, a sort
of template TD documents can match9.

{
” @context ” : ” . . . ” ,
” id ” : ” tag : sensor ” ,
” p r o p e r t i e s ” : {

” temperature ” : {
” type ” : ”number”

} ,
” s e t p o i n t ” : {

” type ” : ”number”
}

} ,
” a c t i o n s ” : {}

}

Listing 2: temperature sensor TD

{
” @context ” : ” . . . ” ,
” id ” : ” tag : furnace ” ,
” p r o p e r t i e s ” : {

” onOffState ” : {
” type ” : ” boolean ”

}
} ,
” a c t i o n s ” : {

”turnOn” : {} ,
” turnOff ” : {}

}
}

Listing 3: furnace TD

In addition to this frame matching problem, the thermostat script lacks
semantics: the script should not apply to all temperature sensors and all
furnances but only to those that relate to the same room. The preferred
way to convey semantics on the Web is to use Web ontologies. The relation
between the sensor and the furnace can e.g. be expressed using terms of the
Brick schema10 and the Building Topology Ontology (BOT)11.

tag:furnace

tag:room

brick:feeds

tag:sensor

bot:containsElement

The semantics of individual interactions between ‘things’ can be given
by some ontological expression that relates these ‘things’ with each other12.
Technically, such expression could also be expressed as JSON-LD frames.
However, another issue arises in this case: the semantic alignment between
existing Web ontologies and the TD model. Because the TD model does not
link to any of the Web ontologies mentioned above, finding the proper terms
for a given application is arduous. As most WoT scripts consume several TD
documents, the minimum semantics that would be necessary for on-target
development should include formal relations between these TDs.

3 existing technologies

As already mentioned, Node-RED is a technology with which scripts can
be easily exposed and exchanged. Node-RED is a flow-based programming
environment designed for non-developers to create mash-up applications. It
is similar in spirit to 4diac13, a development environment based on Eclipse
for distributed control systems. 4diac is an implementation of the IEC 61499

standard14.

3.1 High-Level Taxonomy

Both Node-RED and 4diac include the possibility of defining the general
behavior of an application (like a thermostat) as the composition of sub-
applications (temperature sensor, furnace). They however differ in the way

9 https://www.w3.org/TR/json-ld-framing/
10 http://brickschema.org/
11 https://w3id.org/bot
12 Victor Charpenay, “Semantics for the Web of Things: Modeling the Physical World as a Collection

of Things and Reasoning with their Descriptions,” PhD Thesis, Universität Passau, Passau,
submitted 2019.

13 https://www.eclipse.org/4diac/
14 “IEC 61499 Function blocks – Part 1: Architecture, Edition. 2.0,” International Electrotechnical

Commission (IEC), IEC 61499-1:2012, 2012.

https://www.w3.org/TR/json-ld-framing/
http://brickschema.org/
https://w3id.org/bot
https://www.eclipse.org/4diac/

4 roadmap & conclusion 5

the behavior of base applications (or nodes or function blocks) are specified.
In Node-RED, they are simply pieces of ECMAScript code while IEC 61499

requires to define them in terms of control charts, i.e. state-transition ma-
chines.

More generally, behavior descriptions can be of one of the following types
(non-exhaustive): 1. process-oriented (i.e. state-transition machines), 2. numeric
(e.g. transfer functions from control theory), 3. rule-based & knowledge-based
(e.g. when modeling intelligent agents) and 4. statistical (mostly the result
of some machine learning process, like pre-trained neural networks). By
allowing arbitrary scripts, Node-RED theoretically encompasses all categories
since ECMAScript is a Turing-complete programming language. It is however
hard to optimize to specific problems, e.g. when time constraints must be
met.

3.2 Risks & opportunities

The reader may find analogies with earlier attempts to standardize the
semantics of Web services. OWL-S15 and WSMO16 both include something
like behavior descriptions. It has become clear though that these attempts
have failed given a generally low adoption. An obvious risk for the W3C is
to repeat the story with WoT and a potential semantic module. On the other
hand, the significant success of Node-RED may provide evidence that there
is a need for such an ecosystem.

It immediatly follows that another important risk in the further stan-
dardization of WoT scripts is the competition with Node-RED. However,
this risk becomes an opportunity when considering some of its well-known
shortcomings. One in particular, which originates from a simplistic module
identification mechanism, may be elegantly solved with full Web addressing
(using IRIs). As a result, W3C standardization may complement (maybe even
improve) Node-RED with positive results on both sides.

4 roadmap & conclusion

As outlined in Sec. 2.3, two main issues limit the reusability of WoT scripts,
which in turn can be both addressed with the concept of JSON-LD framing.
The first task to assign a future working group on WoT could consist in
studying the integration of framing in the current WoT API.

A second task may be the alignment of the existing TD model with other
WoT-related ontologies like Brick and BOT, with focus on usability. This task
may run in parallel to the task mentioned above.

Another aspect that may be of interest is the mapping from special-
ized approaches like state-transition machines or rule-based inference to
ECMAScript. Despite the theoretical agnosticism of the current WoT API,
practical experience shows that “any application that can be written in
JavaScript, will eventually be written in JavaScript”, as Jeff Atwood puts it17.

In fact, WoT scripts exchanged as behavior descriptions may never be
executed as JavaScript code. They may as well be used for pure analytics
only (e.g. for liability testing). Yet, the versatility of the language makes it
the ideal tool to bring WoT to the front stage of industrial systems.

15 https://www.w3.org/Submission/OWL-S/
16 www.wsmo.org/
17 https://blog.codinghorror.com/the-principle-of-least-power/

https://www.w3.org/Submission/OWL-S/
www.wsmo.org/
https://blog.codinghorror.com/the-principle-of-least-power/

	Introduction
	Describing the Behavior of Things
	Challenge: Web of Things Scripts as Behavior Descriptions
	Motivation
	Main Issues

	Existing Technologies
	High-Level Taxonomy
	Risks & opportunities

	Roadmap & Conclusion

